Modcomp Version of Tutorial Input

K. I. Moyd

Communications Systems Research Section

The version of Tutorial Input implemented on the Modcomp used for antenna control
at DSS 13 is described. Emphasis is on the use of the Tutorial Input; program operation is
described to the extent that it makes the use more understandable. Flow charts are

provided.

l. introduction

Tutorial Input, a standardized man/computer interface
developed by A.l. Zygielbaum (Ref. 1) and modified by K. L.
Moyd (Ref. 2), has been implemented on the Modcomp II
computer used for antenna control at DSS I3. It is imple-
mented as a set of FORTRAN subroutines that communicate
with the user program by means of tables in common. Several
features have been added to the version used in the DSS 13
automation project (Refs. 3 and 4).

ll. Operation

Tutorial Input is divided into commands and parameters
associated with the commands. Once the operator starts enter-
ing a command, he must enter values for all parameters associ-
ated with that command in a specified order. By doing a
carriage return before all parameters are entered, the operator
can request prompting of the next parameter to be entered.

The commands and parameters are defined in the program
by means of tables set up by the user. A command definition
includes the name of the command, the number of associated
parameters and an index telling where the parameter defini-
tions for the command start. A parameter definition includes

38

the name of the parameter, a code indicating the type of the
parameter, and an index telling where the parameter value is to
be stored. Because of the difference in the number of words
required to store floating point and integer numbers, there are
actually two separate parameter buffers. However, for pur-
poses of knowing how to use the program, it is acceptable to
consider that there is a single parameter buffer. There is also a
flag table that indicates to the user program whether a particu-
lar command has been entered. The flag table allows com-
mands having no parameters to be used for program control.
The command and parameter definition tables, the flag table,
and the parameter buffer can be accessed by both the user
program and the Tutorial Input routine. To prevent premature
transfer of flags and parameter values, an internal flag table
and parameter buffer are established within the Tutorial Input
routine. The internal values are transferred to the user only
upon normal termination of the Tutorial Input routine. This
allows the operator to verify or cancel entries before trans-
ferring them to the user. Several “internal” commands have
been implemented to allow for verification and cancellation.

The Tutorial Input routine is activated by the operator
entering a line of input on the Terminet. Upon activation, the
values in the user parameter buffer are transferred to the
internal parameter buffer and the internal flag table is zeroed.



Input lines are interpreted from left to right by field. A
field consists of the characters from the first nonblank char-
acter following the previous delimiter to the trailing delimiter,
which may be a slash, blank, comma, or carriage return.

There are two kinds of fields, i.e., command and parameter.
A command field is alphanumeric. The first four characters are
used for comparison with the user-defined and internal com-
mand names. These four characters must match exactly,
including blanks (trailing blanks will be added automatically if
fewer than four characters are entered). If the user-defined
command name has fewer than four nonblank characters, only
that many characters may be entered by the operator. How-
ever, if the user-defined command name has four characters,
the operator may enter as many characters as he wishes, as
long as the first four agree. This difference is caused by the
fact that blanks serve as delimiters.

A parameter field is interpreted according to the type
specified by the user-defined code. There are four types:
integer, double precision floating point, two-character alpha-
numeric, and six-character alphanumeric. An integer field, i.e.,
a field to be interpreted as an integer, may contain a decimal
integer with sign (plus is optional) of magnitude less than or
equal to 32767 or a four-digit hexadecimal number preceded
by a # A floating point field may contain an integer as
described above, in which case the decimal point is assumed to
be at the end, or it may contain a decimal number with an
included decimal point. The field may not exceed eight char-
acters. Any violation of these rules will cause an error message
to be printed.

In the case of the alphanumeric fields, the number of
allowed characters is not limited; however, only the first two
or six characters will be transferred to the user. The same
limitations may occur as for command fields if the user com-
pares the parameter with a value containing fewer than the
allowed number of characters.

The routine interprets all fields as command fields except
when it is in the process of accepting the parameters for the
previously entered command. When interpreting a command
field, its first four characters are compared with the internal
and then user-defined command names. If no match is found,
an error message is typed, the remainder of the line is ignored,
and the routine waits for a new line. If it matches with a user
command name, the routine will then look for the parameters,
if any. The operator may have the routine prompt him with
the name of the first parameter to be entered by doing a
carriage return after the command name. If he ends the line
before all parameters are in, he will be prompted with the
name of the next one to be entered. If the operator enters an *
in place of a parameter value, the value in the internal buffer is

left unchanged. Parameters will be converted to the format
specified by the user code and stored in the internal buffer.
Once all the parameters for a command have been found, an
internal flag is set indicating that the command has been
entered. The routine then checks whether there is additional
input on the line. If so, it continues processing the line
interpreting the next field as a command. If there is no
additional input on the line, the user flags corresponding to
the set internal flags are set, and the parameter values for the
entered commands are transferred from the internal parameter
buffer to the user parameter buffer. The routine is then
deactivated until a new line is entered.

The internal commands are acted upon as soon as they are
found. The EXIT command causes a normal termination to
occur whether or not there is subsequent input on the line. All
flags and parameters for commands preceding the EXIT are
transferred to the user. The NOEX command prevents normal
termination until another line has been entered. Anything on
the same line following the NOEX is ignored. ‘ENTER INPUT’
will be typed to remind the operator. The LIST command
causes all command names to be typed out with the associated
parameter names and parameter values from the internal
parameter buffer in a format corresponding to the user-
specified type. If no input follows the LIST command, a
normal termination will be made. Both the TYPE command
and the DELE command require a user command name as a
parameter. If the TYPE or DELE is not followed by any input,
a normal termination will be made. The DELE command
causes the internal flag for the command following the DELE
to be set to a specific value different from the set or reset
condition. Upon normal termination the corresponding user
flag is reset. This allows a previously entered command to be
deleted if it has not already been acted upon. It should be
noted, however, that the values in the user parameter buffer
will not be changed. If no additional input follows the com-
mand name, a normal termination will be made. The TYPE
command causes the parameter values associated with the
following command to be typed out from the internal buffer.
Even if no additional input follows the command name, the
routine will not be terminated. In this case ‘ENTER INPUT’
will be typed out. This feature allows the operator to verify
the correctness of parameter entry before the values are trans-
ferred to the user. He may correct the values by repeating the
command. The * may be used for any parameters that had
been entered correctly. If the parameters were entered cor-
rectly to begin with, the EXIT command may be used to cause
normal termination.

lli. Additional Features

There are some additional editing features. The Terminet
backspace (BS) and delete (DEL) keys may be used to delete a

39



character or a line, respectively. If a <is entered in place of
any command name or parameter, the routine will be termi-
nated immediately upon its interpretation without transferring
any values to the user.

Error méssages indicate the position and kind of error. An !
is typed out directly below the first character of the command
or parameter in error. (Qutput caused by a preceding LIST or
TYPE command may intervene.) There are two different error
messages -~ UNRECOGNIZED COMMAND and ILLEGAL
PARAMETER. In the first case, the routine expects a new
command name to be entered; in the second case, the operator
is prompted with the name of the parameter in error. In both

cases all input preceding the error has been accepted; all input
following the error will be ignored.

As an example, the commands and parameters being used in
the DSS 13 antenna control program are presented in Appen-
dix A. Because of the way Tutorial Input is set up, new
commands may be implemented easily. It is expected that
CONSCAN and three-day fit modes will be added in the near
future.

Tutorial Input, as it is implemented here, could be used on
any Modcomp with FORTRAN programming. Implementation
details and flow charts are presented in Appendix B. Listings
and additional material can be obtained from the author.

References

|. Zygielbaum, A. 1., *‘Tutorial Input’ - Standardizing the Computer/Human Inter-
face”, in The Deep Space Network Progress Report 42-23, pp. 78-86, Jet Propulsion
Laboratory, Pasadena, California, October 15, 1974.

[

. Moyd, K., “Fortran Implementation of Tutorial Input”, in The Deep Space Network

Progress Report 42-24, pp. 88-99, Jet Propulsion Laboratory, Pasadena, California,

December 15, 1974.

3. Moyd, K. L. “Automatic Control of DSS-13”, inThe Deep Space Network Progress
Report 42-29, pp. 107-114, Jet Propulsion Laboratory, Pasadena, California, Octo-

ber 15, 1975.

4. Moyd, K. 1., “Remote Automatic Control of DSS-13, The Deep Space Network
Progress Report 42-30, pp. 174-183, Jet Propulsion Laboratory, Pasadena, California,

December 15, 1975.

40



Appendix A
Tutorial Input Commands for the DSS 13 Antenna

The first name is the command name; the indented names
are the parameter names. b = blank (may be omitted but not
replaced by nondelimiter).

Command  Parameter Description

SIDb Track a source at the sidereal rate.
When acted on, RA and DEC will
be typed in decimal degrees.

ID Up to 6 alphanumeric character
identification.

RA  Right ascension in form HHMMSST
where HH = hours, MM = minutes,
SS =seconds, T =tenths of sec-
onds. Interpreted as double preci-
sion floating point.

DEC Declination in form *DDMMSS
where DD = degrees, MM = min-
utes, SS =seconds and the + is
optional. Interpreted as double pre-
cision floating point.

AZEL Move the antenna to a specified AZ
and EL.

OFFb

CLRO

STOP

AZ

EL

REG

AZOF

ELOF

Control Program

Azimuth in decimal degrees 0.000
to 359.999 (decimal point to be
included).

Elevation in decimal degrees. 0.000
to 90.000 (decimal point to be
included).

Lb = left wrap-up region.
Rb =right wrap-up region.
other = center region.

Change variable offsets (default
values are zeroes).

Azimuth offset in decimal degrees.
Elevation offset in decimal degrees.

Note: In SID mode, the azimuth
offset will be divided by COS(EL)
to get the specified number of
degrees on the sky. In AZEL mode,
the azimuth offset will be applied
directly.

Clear both variable offsets.

Safely decelerate antenna and apply
brakes.

41



Appendix B

Implementation and Flow Charts

The implementation of Tutorial Input on the Modcomp
was made easier by the fact that several string handling and
conversion services are provided by the operating system (as
REX services). Although some of these services have
FORTRAN-callable versions, the assembly language versions
had to be used to allow enough significant figures for the
numerical parameters. FORTRAN-callable subroutines were
therefore written to use these services. Several of the services
are set up such that the output from one is in the form of the
expected input of another. Details of these services can be
found in the Modcomp computer manuals.

The main Tutorial Input routine is called TUTOR
(Fig. B-1). It may be set up as a separate task or as a subrou-
tine called by a user task. The remaining subroutines used to
implement Tutorial Input are called only by the Tutorial Input
routines, not by the user.

TUTIN (LFIRST) (Fig. B-2) provides one line of Terminet
input to the calling program. If LFIRST is false, the input is
accepted from the Terminet. If LFIRST is true, it is assumed
that the input has already been accepted. This procedure is
used so that the first line of input can be accepted by the user
program before TUTOR is called.

TYPOUT (I, param buffers) (Fig. B-3) types out the

internal values of the parameters for the /P command in the
formats specified by their type codes except that double

42

precision floating point numbers are typed out both in double
precision form with exponent, and in fixed point with three
decimal places. The latter is easier to read, but may not
contain enough significant figures.

COLLECT (IERR, LNUM) (Fig. B-4) uses the REX service
COLLECT to pick out the next field in a character string.
Delimiters are trailing blanks, slashes, commas, equal signs, and
trailing plus or minus signs. If the field contains only charac-
ters allowed in numbers (decimal or hexidecimal if preceded
by a #), LNUM is set to TRUE; otherwise it is FALSE. If a
numerical parameter field exceeds 8 characters, IERR is set to
-1; if there is no nonblank character before the end of the
string, it is set to 1; otherwise, it is set to 0. The field is stored
in A2 format in an array in COMMON.

ALTOBN (LINT, LDEC) (Fig. B-5) converts a field in the
form stored by COLLECT to a binary double precision integer
with scale factor using the REX service ATN. LINT is set to
TRUE if the absolute value of the number is less than 32768
(i.e., if it can be contained in a single precision integer); LDEC
is set to TRUE if a decimal point occurred in the number. The
resulting number is placed in the same array as the input field.

INTFP (Fig. B-6) converts a number in the form stored by
ALTOBN to a Modcomp double precision floating point
number.



ERRIND

FALSE

i

LDELE, LTYPE =
FALSE
LFIRST, LEXIT =
TRUE

'

TRANSFER PARA-
METERS TO
INTERNAL BUFFERS

!

ZERO FLAG BUFFER l

=~—(%)

TUTIN

GET ONE LINE
OF INPUT

COLLECT

GET NEXT
COMMAND NAME

IS IT AN INTERNAL
COMMAND?
IS IT AN USER
COMMAND?
TRUE

0 (1 = INDEX)

SEE SHEET 4

MARK POSITION
OF ERROR

LDELE
/

'UNRECOGNIZED
COMMAND'

)

IFLAGB(l) = -1
LDELE = FALSE

Fig. B-1. TUTOR

43



FALSE

TRUE

LTYPE

i

TYPOUT

TYPE THE
PARAMETERS

i

COLLECT

GET NEXT
PARAMETER

NO END OF
INPUT LINE?

!

LTYPE, LEXIT =
FALSE

YES

NUMERIC PARA-
METER WITH >8
CHARACTERS ?

PARAMETER =
*?

NUMERIC

ALTOBN

CONVERT TO
DP INTEGER

[

—

TYPE NAME OF
NEXT
PARAMETER

TUTIN

©

—©

ERRIND

'ILLEGAL
PARAM!

ALPHANUMERIC

rom e
INTEGER BUFFER CISION BUFFER

R

]

Fig. B-1 (contd)



INTEGER

NUMBER TOO
LARGE OR WITH
DECIMAL POINT

NO YES

STORE IN
INTEGER BUFFER

|

DESIRED
TYPE

FLOATING POINT

INTFP

CONVERT

!

STORE IN DOUBLE
PRECISION BUFFER

]

'ENTER
INPUT!

‘ LEXIT = TRUE J

®

ALL PARAMETERS
IN?

—©

l SET FLAG l

(END OF LINE)

i

=1 YES

I >N

1=1+1

F__‘NO

TRANSFER
PARAMETERS
TO USER

i

{ FLAG =1 ]

[

1 BUFFER
FLAG())

FLAG =0

Fig. B-1 (contd)

45



@ (INTERNAL COMMAND)

! (DELE) N\ 5 (NOEX)

{ |

4 (EXIT)

'ENTER

LDELE =~ TRUE 1 ﬁypa 3 (LIsT)

INPUT’

l LTYPE = TRUE ‘

=1 J> YES

NCOM
vo

WRITE
COMMAND
NAME

TYPOUT

TYPE PARAMETERS

Fig. B-1 (contd)

i

RESET
CHARACTER
POINTER
LFIRST
)
LFIRST =
READ 1 LINE
REAC FALSE
415t WORD =
NULL
RETURN

Fig. B-2. TUTIN (LFIRST)



NO

ANY PARAMETERS
FOR COMMAND ?

J>NU MBER

DP FP/ PARAMETER 6 CHARACTERS

YES
J=J+1 |PARAMETERS? ‘

TYPE

INTEGER 2 CHARACTERS

FORMAT FORMAT FORMAT FORMAT
D17.8 17 A3 A7
Fig. B-3. TYPOUT (I, parameter buffers)
SET UP
REGISTERS
FOR COLLECT
COLLECT
NON-
NULL NUMERIC
REX #35
§ NUMERIC
STORE
STORE
REGISTERS REGISTERS
MORE THAN
8 CHARAC-
TERS?
y \
IERR - IERR = 0 IERR - - LNUM = FALSE
1 LNUM = TRUE IERR = 0

Fig. B-4. COLLECT (IERR, LNUM)

47



i

SET UP
REGISTERS

'

ATN

REX #38

{

STORE
REGISTERS

'

ERROR

(ALREADY CHECKED
BEFORE CALLING
ALTOBN)

.
|

I

[

|

|

|
——d

LINT = TESTB OF
BIT 1 OF 3rd WORD

i

LDEC = TESTB OF
BIT 2 OF 3rd WORD

{

ZERO QUT 1st 2

BITS OF 3rd WORD

{

LDEC = NOT LDEC l

L |

Fig. B-5. ALTOBN (LINT, LDEC)

i

IEXP =
474980

NUMBER
NEGATIVE?

COMPLEMENT

1EXP

Y

WORD, = IEXP
WORDy, WORD4 =

DP iNTEGER

{

ADD TO 0.0 (TO
NORMALIZE)

MULTIPLY BY

-SCALE

10

RETURN

Fig. B-6. INTFP



